
For U & Me Overview

A robot enthusiast’s flight of fancy could envisage a
futuristic society where robots and human beings
coexist. This apparent utopia would be cohabited by

human beings and robots that obey human beings and help
in their daily chores, do the jobs that are redundant, come to
rescue when human lives are in jeopardy, and are intelligent
enough to protect the human populace.

The development of paradigms for a human-robot society
led to science fiction writer Isaac Asimov coining the Three
Laws of Robotics:
I. A robot may not injure a human being or, through

inaction, allow a human being to come to harm.
II. A robot must obey the orders given to it by human beings,

except where such orders would conflict with the First Law.
III. A robot must protect its own existence, as long as such

protection does not conflict with the First or Second Laws.
These laws have come to form the basis of a stable

society containing robots that are subservient to the
human population.

Multi-robot systems
To make prophecies about such futuristic societies, it is
important to study multi-robot interactions. It is easy to see
that a multi-robot team will have clear advantages over a

single robot system. Also, improved performance due to
distributed sensing, enhanced fault tolerance and parallelism,
add to the virtues of a robotic team.

Like many other emerging fields of robotics, algorithms
for multi-robot systems are inspired by nature. Foraging for
food, division of labour, nest-building, cumulative defence
against enemies, leader following, flocking, etc, are common
in human, insect and animal societies.

A unique feature of multi-robot systems is that one can
distinguish between individual-level behaviour and team-
level behaviour. The former refers to what an individual in
a team does. The latter refers to the behaviour of the team
as a whole. For instance, in schools of fish, the individual
behaviour of each fish is to mainly avoid collision with
neighbours, and match their attitude. The team-level
behaviour, on the other hand, is a remarkable display of
cohesive and coordinated motion.

The study of the relationship between individual and
team-level behaviour is just beginning. It’s a long road to
constructing multi-robot systems that are able to display
the same complexity and performance of natural systems
like insect societies. Also, the cost for this type of research
is prohibitive. Robots are expensive, and producing large
quantities of them is out of the reach of today's research

This is the second article in a series that focuses on open source
software for robotics. This part introduces the Linux enthusiast to
multi-robot simulators, by taking a peek into Stage and ARGoS. Part—2

Multi-Robot
Simulators

Open Source Robotics

From left to right: Pioneer robots and the Foot-bot robot

48 | april 2012 | liNUX For YoU | www.linuxForU.com

Overview For U & Me

budget. Luckily, scalable multi-robot simulation programs
have come to the rescue.

Robotics: Real robots vs simulations
There exists a wide variety of robot simulators. Those
designed before the year 2000 were typically targeted at
specific use-cases. It was only during the last decade that PCs
started to become powerful enough to allow for more complex
designs. Today, there are a few general robot simulators that
meet the needs of the robotics community.

The performance of a robot simulator and its accuracy
are typically the result of a trade-off between the number of
robots and speed of simulation. Performance evaluation of
Stage and ARGoS discussed in later sections illustrate this
trade-off. When the aim is to simulate large teams of robots,
this trade-off can become dramatic. For this reason, in the last
few years, a few simulators have been designed to provide
good performance for large teams of robots.

The Stage simulator
Stage is a part of the Player Project (Player/Stage/Gazebo) and
is now also a part of ROS (Robot Operating System); there
have been significant changes since version 3 to improve its
simulation performance. Maybe the most important novelty is
the support for multi-threaded execution.

Stage is supported in nearly all UNIX-based OSs and in
Mac OS X. It is interesting to know that the name ‘Player’
and ‘Stage’ were inspired by the quote, "All the world's a
stage," by William Shakespeare in As You Like It.

Stage provides the user with a two-dimensional graphic
environment, which has facilities for a perspective camera,
making it effectively a 2.5 dimensional simulator. Stage has
facilities for modelling the robot and its sensors using simple
scripts. Some in-built Stage controllers are the ‘wander’
controller, which enables a wandering kind of behaviour;
the ‘lasernoise’ controller, which helps in studying the noise
generated in the laser sensor of the robot; and the ‘pioneer_
flocking’ controller, which enables flocking behaviour for a
number of pioneer robots.

To implement the ‘pioneer_flocking’ controller, cd
to Stage-source/worlds and run the world file with the
following command:

stage pioneer_flocking.world

That will pop up a screen similar to the one in Figure 1.
Stage shines at simulating navigation- and sensing-based

experiments. It can simulate one robot about 1000 times faster
than real-time, and 1000 robots in about real-time. However,
the kinematic physics models employed in Stage prevent one
from executing experiments that involve pushing and pulling
objects, as well as robot self-assembly.

To cope with this issue, the Player Project offers Gazebo,
which is a three-dimensional dynamics simulator. In Gazebo,

Figure 2: Pioneer robots formation

one can run very complex experiments. However, the
improved accuracy of the robot models makes this simulator
much slower than Stage.

Stage is also a part of ROS. However, at the time of
writing, the latest ROS release Electric Emys does not support
Stage controllers through the ROS nodes.

The stable release of Stage can be downloaded from
playerstage.sourceforge.net/. Alternatively, if you feel
adventurous and want to try the bleeding edge, you can download
the development version at https://github.com/rtv/Stage.

Figure 1: Multi-coloured pioneer robot models forming swarms

www.linuxForU.com | liNUX For YoU | april 2012 | 49

For U & Me Overview

The ARGoS simulator
ARGoS (Autonomous Robots Go Swarming) is a
multi-robot simulator designed to support large teams
of robots. Its design is pretty different from the design
of other simulators. Its most distinctive feature is that
the 3D simulated world can be divided in regions,
and each region can be assigned to a different physics
engine. Furthermore, ARGoS' design revolves around
the concept of tunable accuracy. In other words, in
ARGoS, everything is a plug-in (robot models, sensors,
actuators, physics engines, visualisations, etc) and the
user can select which plug-ins to use for an experiment.
Since different plug-ins have different accuracy and

Figure 3: ARGoS basic simulation

Figure 5: Two pioneer robots in Gazebo

Figure 4: Flock formation in ARGoS

[1] I Robot, 2004 movie, www.imdb.com/title/tt0343818/
[2] R Vaughan, ‘Massively Multiple Robot Simulations in

Stage,’ Swarm Intelligence 2(2-4):189-208, 2008. Springer.
[3] N Koenig and A Howard, ‘Design and Use Paradigms for

Gazebo, An Open-Source Multi-Robot Simulator,’ a paper
presented at the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2004

[4] Carlo Pinciroli, Vito Trianni, Rehan O'Grady, Giovanni Pini,
Arne Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo
Ferrante, Gianni Di Caro, Frederick Ducatelle, Timothy
Stirling, Álvaro Gutiérrez, Luca Maria Gambardella and
Marco Dorigo. ‘ARGoS: a Modular, Multi-Engine Simulator
for Heterogeneous Swarm Robotics.’ – proceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2011), pages 5027-5034, IEEE
Computer Society Press, Los Alamitos, CA.

Reference

By: A Bhaumik

The author is a faculty member at the Birla Institute of Technology,
Mesra, Ranchi. He is a robotics enthusiast and his ramblings on
mobile robots can be found at his blog, mobotica.blogspot.in/. He
can be reached at arkapravobhaumik@gmail.com.

computational costs, users can choose which plug-ins
to use for each aspect of the simulation and assign
resources only where it matters. This makes the
simulation as fast as possible.

At the time of writing, ARGoS supports the Swarmanoid
robots (foot-bot and eye-bot) and the e-puck. ARGoS
supports Linux and Mac OSX. Binary packages are
available for Ubuntu, Slackware and Mac OS-X. In addition,
a generic binary package can be used for other Linux
distributions. Everything is downloadable from iridia.ulb.
ac.be/argos/download.php.

Robot control code for ARGoS is written in C++.
Experiments are configured through an XML file. To run
a demo simulation in ARGoS, download the examples
from the same URL, uncompress the archive, and run the
experiment with the following command:

launch_argos -c xml/diffusion_1.xml

That results in a screen popping up, as shown in Figure 3,
with a single foot-bot robot in a red box-like environment.

Compared to Stage, ARGoS provides a 3D simulation
environment. In addition, since the physics engines can
be chosen by the user, any kind of experiment is possible,
including complex self-assembly. Its performance is
found to be superior to Stage's. With the full power of
four cores on a normal desktop PC, ARGoS can simulate
more than 4000 robots in real-time.

Watch out for Part 3 of this series, which will contain a
comprehensive discussion on ROS.

50 | april 2012 | liNUX For YoU | www.linuxForU.com

