
ARGoS:
a Modular, Multi-Engine Simulator
for Heterogeneous Swarm Robotics

Carlo Pinciroli†, Vito Trianni†, Rehan O’Grady†, Giovanni Pini†, Arne Brutschy†,
Manuele Brambilla†, Nithin Mathews†, Eliseo Ferrante†, Gianni Di Caro‡, Frederick Ducatelle‡,

Timothy Stirling§, Álvaro Gutiérrez∗, Luca Maria Gambardella‡ and Marco Dorigo†

Abstract— We present ARGoS, a novel open source multi-
robot simulator. The main design focus of ARGoS is the
real-time simulation of large heterogeneous swarms of robots.
Existing robot simulators obtain scalability by imposing limi-
tations on their extensibility and on the accuracy of the robot
models. By contrast, in ARGoS we pursue a deeply modular
approach that allows the user both to easily add custom features
and to allocate computational resources where needed by the
experiment. A unique feature of ARGoS is the possibility to
use multiple physics engines of different types and to assign
them to different parts of the environment. Robots can migrate
from one engine to another transparently. This feature enables
entirely novel classes of optimizations to improve scalability and
paves the way for a new approach to parallelism in robotics
simulation. Results show that ARGoS can simulate about 10,000
simple wheeled robots 40% faster than real-time.

I. INTRODUCTION

In this paper we present ARGoS, a novel open source
multi-robot simulator. ARGoS was developed within the
EU-funded Swarmanoid project1, which was dedicated to
the study of tools and control strategies for heterogeneous
swarms of robots. Simulation is central to the study of swarm
robotics for several reasons. In general, simulation allows for
cheaper and faster collection of experimental data, without
the risk of damaging the (often expensive) real hardware
platforms. In addition, simulated experiments can potentially
involve quantity of robots that would be impossible to
manufacture for reasons of cost. In the quest for an effective
simulation tool for the Swarmanoid robots, we identified
two critical requirements: extensibility (to support highly
diverse robots) and scalability (to support a high number
of robots). In this paper, we argue that existing simulator
designs are not suitable for large heterogeneous swarms of
robots. This is because designs focused on extensibility lack
in scalability, while those focused on scalability lack in

† C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante and M. Dorigo are with IRIDIA, CoDE, Université
Libre de Bruxelles, 50 Avenue F. Roosevelt, CP 194/6, 1050 Bruxelles,
Belgium.

‡ G. Di Caro, F. Ducatelle and L.M. Gambardella are with IDSIA, USI-
SUPSI, Galleria 2, 6928 Manno-Lugano, Switzerland.

§ T. Stirling is with LIS, École Polytechnique Fédérale de Lausanne,
Station 11, CH-1015 Lausanne, Switzerland.

∗ Á. Gutiérrez is with ETSI Telecomunicación, Universidad Politécnica
de Madrid, Avd. Complutense 30, 28040 Madrid, Spain.

1http://www.swarmanoid.org

extensibility. We propose a novel simulator design that meets
both requirements.

The result of our work is a multi-robot simulator called
ARGoS (Autonomous Robots Go Swarming). Extensibility is
ensured by ARGoS’ highly modular architecture—robots,
sensors, actuators, visualizations and physics engines are
implemented as user-defined modules. Multiple implemen-
tations of each type of module are possible. The user can
choose which modules to utilize in an experiment through
an intuitive XML configuration file. To obtain scalability,
the ARGoS architecture is multi-threaded and is designed to
optimize CPU usage. Performance can be further enhanced
by choosing appropriate modules. For instance, there are
many possible models for each specific sensor or actuator,
characterized by differences in accuracy and computational
cost. Each model is implemented into an ARGoS module.
By choosing the modules for an experiment, the user can
allocate computational resources where necessary.

A unique feature of ARGoS is the fact that the simulated
space can be partitioned into sub-spaces, each of which
is managed by a different physics engine. Robots migrate
seamlessly and transparently from sub-space to sub-space
as they move in the environment. This feature of ARGoS
enables a set of optimization opportunities (see Sec. IV) that
significantly increase performance.

After the Swarmanoid project, ARGoS is now the official
robot simulator of another EU-funded project, ASCENS2.
ARGoS currently supports the Swarmanoid robots [1], [2],
[3] and the e-puck [4]. ARGoS is open source and under
continuous improvement3. It currently runs under Linux and
Mac OS X.

The paper is organized as follows. In Sec. II, we discuss
existing simulation designs with respect to extensibility and
scalability. In Sec. III we describe the architecture of the AR-
GoS simulator. In Sec. IV we explain how multiple physics
engines work together in ARGoS. In Sec. V we illustrate the
parallelization of execution into multiple threads. In Sec. VI
we report experimental scalability results. In Sec. VII we
conclude the paper and indicate future research directions.

2http://ascens-ist.eu/
3ARGoS can be downloaded at http://iridia.ulb.ac.be/argos/.

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-455-8/11/$26.00 ©2011 IEEE 5027

II. RELATED WORK

In the following, we describe the features of some existing
multi-robot simulators with respect to the requirements for
heterogeneous robot swarms: extensibility and scalability.
The simulators we consider are all physics-based—robot
bodies, sensors and actuators are simulated using physics
models. Moreover, all simulators are discrete-time, which
means that the execution proceeds synchronously in a con-
stant step-wise fashion. A complete review of the state of
the art in robot simulation is beyond the scope of this paper.
We refer the interested reader to the survey of Kramer and
Schultz [5].

A. Extensibility

The design of a general and extensible simulator is a
relatively recent achievement. Before the 2000s, CPU speed
and RAM size on an average personal computer were insuffi-
cient to support extensible designs while ensuring acceptable
simulation performance. In the last decade, a few simulators
able to support different types of robots were developed.
To date, the most widespread simulators of this class are
Webots [6], USARSim [7] and Gazebo [8]. The engines of
Webots and Gazebo are implemented with the well known
open source 3D dynamics physics library ODE4. USARSim
is based on Unreal Engine, a commercial 3D game engine
released by Epic Games5. Although Gazebo and USARSim
can support different kinds of robots, their architecture was
not designed to allow the user to change the underlying mod-
els easily, thus limiting extensibility. Webots’ architecture, on
the other hand, provides a clean interface to the underlying
ODE engine and override the way some forces are calculated.
For example, Webots offers a fast 2D kinematics motion
model for differential drive robots. However, extensibility
is limited by the fact that it is not possible to change the
implementation of sensors and actuators.

The recent multi-robot simulation framework
MuRoSimF [9] tackles the issue of simulating robots
of different kinds with a more general approach. In
MuRoSimF, the devices forming a robot are arranged in a
tree of nodes. Each node contains the code to simulate a
model of a device. Each node can be further subdivided
into sub-nodes to increase accuracy. This approach is very
extensible and can support virtually any type of robot.

B. Scalability

Scalability is an issue in swarm robotics systems due to the
potentially high number of robots involved in an experiment.
The simulators described in Sec. II-A are not designed
to support large numbers of robots. The main concern in
Webots, USARSim and Gazebo is accuracy, at the cost of
performance. MuRoSimF is designed to support mechani-
cally complex robots, such as humanoid robots. Typically,
in swarm robotics, robots are designed to be mechanically

4http://www.ode.org/
5http://www.epicgames.com/

Controller

Sensors Actuators

Entities

Simulated 3D Space

Physics Engines Visualizations

Control Interface

Fig. 1. The architecture of the ARGoS simulator.

simple, thus making MuRoSimF’s computationally expensive
structure unnecessary.

To the best of our knowledge, the only widespread sim-
ulator in the robotics community that tackles the issue of
simulating thousands of robots in real-time is Stage [10].
However, this capability is obtained by imposing design and
feature limitations. Stage is designed to support differential-
drive robots modeled by 2D kinematics equations. Sensor
and actuator models neglect noise. Stage excels at simulating
navigation- and sensing-based experiments. However, due to
the nature of the physics equations employed, realistic exper-
iments involving robots gripping objects or self-assembling
are not possible.

Combining scalability with extensibility is a non-trivial
design challenge that has not yet been satisfactorily solved.
In the following, we present the approach we followed in the
design of ARGoS.

III. THE ARCHITECTURE

The ARGoS architecture is depicted in Fig.1. The white
boxes in the figure correspond to user-definable software
modules.

The simulated 3D space. The core of the architecture is
the simulated 3D space. It is a central repository containing
all the relevant information about the state of the simulation.
Such information is organized into basic items referred to
as entities. ARGoS natively offers several types of entities
and the user can define new types if necessary. Each type
of entity stores information about a specific aspect of the
simulation. For instance, a robot is typically represented in
the simulated 3D space as a composable entity, that is, an
entity that contains other entities. Entities that can compose a
robot include the controllable entity, which stores a reference
to an instance of the user-defined robot controller and its
sensors and actuators, and the embodied entity, which stores
spatial information about the robot and the way it occupies
space (e.g., its position, orientation and 3D bounding box).
Furthermore, entity types are organized in hierarchies. The
embodied entity, for example, is an extension of the posi-
tional entity, which stores the position and orientation of
an object in the 3D space. To enhance performance when

5028

(a) (b)

Fig. 2. Screen-shots from different visualizations. (a) Qt-OpenGL; (b) POV-Ray.

accessing data in the simulated space, each type of entity is
indexed in data structures optimized for access speed. For
instance, positional entities and their extensions are indexed
in several type-specific space hashes [11].

Sensors and actuators. Sensors are modules that read the
state of the simulated 3D space. Exploiting the fact that
simulated objects are composed of different entities, sensor
modules need to access only specific kinds of entities to
perform their calculations. For instance, a sensor module
simulating a distance sensor needs to access information
about embodied entities only. Analogously, actuator modules
write into the components of a robot. For example, the
LED actuator of a robot updates its LED-equipped entity
component. This tight relationship between sensors/actuators
and entity types has two beneficial effects: (i) sensors and
actuators can be implemented in a generic and efficient
way, taking into account specific components instead of the
complete robot; (ii) new robots can be inserted reusing the
already existing components, and all the sensors/actuators
depending on those components work without modification.

Physics engines. Physics engines are modules that update
the state of the embodied entities. As explained in more
detail in Sec. IV, multiple engines of different types can be
run in parallel during an experiment. Each physics engine
is responsible for a subset of the embodied entities in the
simulated space.

Visualizations. Visualization modules read the state of
the simulated 3D space and output a representation of it.
Currently, ARGoS offers three types of visualization: (i)
an interactive graphical user interface based on Qt46 and
OpenGL7 (see Fig.2(a)), (ii) a high-quality rendering engine
based on the well known ray-tracing software POV-Ray8 (see
Fig. 2(b)), and (iii) a text-based visualization designed for
interaction with plotting programs such as GNUPlot9.

Controllers. Robot controllers are modules interacting

6http://qt.nokia.com/
7http://www.opengl.org/
8http://www.povray.org/
9http://www.gnuplot.info/

with the simulated space through sensors and actuators. As
shown in Fig.1, the ARGoS architecture provides an abstract
control interface to sensors and actuators. The control inter-
face is the same for simulated and real robots, allowing users
to develop code in simulation and seamlessly port their work
to real robots.10 ARGoS and the control interface are written
in C++. However, it is possible to program the robots in other
languages. The ASEBA scripting language [12] has already
been integrated with ARGoS, and further language bindings
(e.g., PROTO [13]) are under development.

IV. MULTIPLE ENGINES

In existing simulators such as Webots, Gazebo, USARSim
and Stage, the physics engine is the simulated space. In
ARGoS, simulated space and physics engine are distinct
concepts. The link between the two concepts is realized
by the embodied entities. Embodied entities are stored in
the simulated space and their state is updated by a physics
engine.

This novel design choice makes it possible to run multiple
physics engines in parallel during an experiment. In practice,
this is obtained by dividing the set of all the embodied
entities into multiple subsets, and assigning to each subset
a different physics engine. There are two ways to obtain
suitable subsets of embodied entities. One way is to manually
perform this division. For instance, in [14], [15], flying
robots were assigned to a 3D dynamics engine and wheeled
robots to a 2D kinematics engine. An alternative way to
divide entities into subsets is by assigning non-overlapping
bounded volumes of the space to different physics engines.
For instance, in an indoor environment, each room and
corridor can be assigned to a different physics engine. In the
current implementation, the user space can be partitioned
with volumes defined as arbitrarily sized prisms. The user
can specify in the XML experiment configuration file what
happens when a robot crosses each face of a prism. Two
alternatives are possible: a face can be either a wall or a

10In practice, this is obtained by cross-compiling the code developed in
simulation onto the real robot.

5029

gate. A wall-type face is such that a robot cannot traverse it.
A gate-type face is such that, when a robot traverses it, the
robot migrates to another physics engine (set by the user in
the configuration file). As a robot navigates the environment,
its embodied entity component is updated by the physics
engine corresponding to the volume in which it is located.
The migration from a physics engine to another is completely
transparent and performed by ARGoS automatically. The
experiments presented in Sec.VI use this second division
method.

To keep the state of the simulated 3D space consistent,
we distinguish between mobile and non-mobile embodied
entities. Embodied entities are mobile when their state (po-
sition, orientation and 3D bounding box) can change over
time (e.g., robots and passive objects that can be pushed or
gripped). To avoid conflicts between physics engines, mobile
embodied entities can be associated to only one physics
engine at a time. Conversely, embodied entities are non-
mobile when their state is constant over time. Thus, they can
be associated to multiple physics engines simultaneously. In
this way, the structural elements of the environment (e.g.,
walls or columns) are shared across the physics engines,
resulting in a consistent representation of the simulated 3D
space.

It is important to notice that, although two robots updated
by different physics engines do not physically interact, they
can still communicate and sense each other (e.g., through
proximity sensors or cameras). For example, consider ray-
body intersection checking, which is a common method to
calculate the readings of proximity sensors and cameras. In
ARGoS, when a sensor casts a ray to check for intersecting
bodies, it issues a query to the simulated space. In turn,
the simulated space constructs a list of possible embodied
entities that could intersect the ray. The list is constructed
in an efficient way due to the optimized space hash that
indexes the embodied entities. Each candidate embodied
entity forwards the query for ray checking to the physics
engine that is currently updating it. Thus, although the actual
ray-body intersection is performed by the physics engine, for
a sensor this is completely transparent, and two robots in
different physics engines can sense each other.

The fact that robots updated by different engines do not
physically interact could, in principle, lead to compenetration
between two robots at opposite sides of the border between
the two engines. It is up to the user to make sound choices
to hinder the impact of this phenomenon. For instance,
since proximity readings calculations work flawlessly across
engines, an efficient obstacle avoidance routine would pre-
vent compenetration from happening, keeping the simulation
realistic. A further solution is partitioning wisely the space.
For instance, flying robots could be assigned to a physics
engine and wheeled robots to another. While flying robots
are in the air, collision with wheeled robots can not happen.
However, it is not possible to let robots self-assemble across
engines. Self-assembly can only happen within an engine,
and the assembled structure can subsequently navigate across
engines.

Alg. 1 Simplified pseudo-code of the main simulation loop of ARGoS.
Each ‘for all’ loop corresponds to a phase of the main simulation loop.
Each phase is parallelized as shown in Fig. 3.

1: Initialize
2: while experiment is not finished do
3: Visualize the simulated 3D space
4: for all robots do
5: Update sensor readings
6: Execute control step
7: end for
8: for all robots do
9: Update robot status

10: end for
11: for all physics engines do
12: Update physics
13: end for
14: end while
15: Visualize the simulated 3D space
16: Cleanup

} sense+control

} act

} physics

Typically, physics engines perform their calculations in
a local representation of the volume of space for which
they are responsible. The results are then transformed into
the representation of the simulated 3D space. This makes it
possible to insert into ARGoS any kind of logic to update
embodied entities. The user can easily add new application-
specific physics engines whose local representation of the
simulated 3D space is optimized for speed. At the time
of writing, ARGoS natively offers four kinds of physics
engines: (i) a 3D dynamics engine based on ODE, (ii) a
custom 3D particle engine, (iii) a 2D dynamics engine based
on the open source physics engine library Chipmunk11, and
(iv) a custom 2D kinematics engine.

The results reported in Sec.VI show that the simultaneous
use of multiple physics engines has positive consequences on
performance. Since embodied entities managed by different
physics engines do not collide with each other, the engines
must check collisions only among the embodied entities
for which they are responsible. In addition, as explained
in Sec. V, engines are executed in parallel threads, thus
increasing CPU usage and decreasing run-time.

V. MULTIPLE THREADS

To ensure efficient exploitation of computational re-
sources, the main architecture of ARGoS is inherently multi-
threaded. Multi-threading is embedded in the main simula-
tion loop. During the execution of the main simulation loop,
sensors and visualizations read the state of the simulated
3D space, while actuators and physics engines write into it
(see Fig.1). The simulated space is thus a shared resource.
Parallelizing the execution of the simulation loop could,
in principle, create race conditions on the access of the
simulated space. Solving race conditions with semaphores,
though, is not optimal because of the high performance
costs involved [16]. Thus, we designed the main loop and

11http://code.google.com/p/chipmunk-physics/

5030

s1

s2

...

sP

s1

s2

...

sP

s1

s2

...

sP

m m m m

main main main main

sense+control act physics

Fig. 3. The multi-threading schema of ARGoS is scatter-gather. The
master thread (marked with ‘m’) coordinates the activity of the slave threads
(marked with ‘s’). The sense+control, act and physics phases are performed
by P parallel threads. P is defined by the user.

the simulated space so as to avoid race conditions. In this
way, modules do not need to synchronize with each other
or cope with resource access conflicts. As a consequence,
developing new modules is easy, despite the parallel nature
of the ARGoS architecture.

As can be seen from the pseudo-code reported in Alg.1, the
main simulation loop is composed of three phases executed
in sequence: sense+control, act and physics. These phases
are parallelized following a scatter-gather paradigm. The
three phases forming the main loop are coordinated by a
master thread, marked with ‘m’ in Fig. 3, and executed by
P slave threads, marked by ‘s’. The number of slave threads
P is set by the user in the XML experiment configuration
file. Each slave thread is initially idle, awaiting a signal from
the master thread to proceed. When a phase is started by the
master thread, the slave threads execute it and send a ‘finish’
signal back to the master thread upon completion of their part
of the work.

The sense+control phase of the main simulation loop
reads from the simulated space (lines 4–7 of Alg.1). The
C controllable entities stored in the simulated space are
evenly distributed across the P slave threads. Each thread
loops through the C/P controllable entities (if C < P , then
P −C threads are idle). For each controllable entity, first the
sensors are executed to read the status of the simulated space
and perform their calculations. Subsequently, the controller
is executed. It uses the sensor readings to select the actions to
perform. The actions are stored in the actuators associated to
the controllable entity, but the simulated space is not updated
yet (i.e., the actions are not executed). As the simulated
space is only read from in this phase, race conditions are
not possible.

In the two subsequent phases, the actions stored in the
actuators are executed by updating the state of the entities
in the simulated space. First, in the act phase, the actuators
update the robot entity components linked to them, except
for the embodied entities (lines 8–10). Analogously to the
previous phase, the threads loop through C/P controllable
entities. Since each actuator is linked to a single robot entity
component, even though actuators are executed in different
threads, race conditions are not possible.

In the physics phase (lines 11–13) the physics engines

Fig. 4. A screen-shot from ARGoS showing the simulated arena created
for experimental evaluation.

update the mobile embodied entities in the simulated space.
Denoting with M the number of employed physics engines,
each slave thread is responsible for M/P physics engines.
If M < P , then P − M threads will be idle during this
last phase. Race conditions are not possible since mobile
embodied entities are assigned to only one physics engine
at a time, and mobile embodied entities updated by differ-
ent physics engines do not physically interact. In addition,
physics engines do not need to synchronize with each other
because their integration step is set to the same value.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate ARGoS’ scalability, focusing
on the most distinctive feature of ARGoS—the possibility
to run multiple physics engines in parallel. To highlight
the performance benefits, we limit experiments to a single
type of robot and multiple instances of one type of physics
engine, and we do not use any visualization. For examples
of experiments that utilize different types of physics engines
and different kinds of robots, see [14], [15], [17], [18], [19],
[20].

A. Experimental Setup

To date, there is little work in assessing the performance
of multi-robot simulators for thousands of robots. For this
reason, in the literature no standard benchmark has been
proposed. To the best of our knowledge, the only simulator
whose scalability was studied for thousands of robots is
Stage. In [10], Vaughan studies Stage’s performance in a
very simple experiment in which robots disperse in an
environment while avoiding collisions with obstacles. The
rationale for this choice is that typically the performance
bottleneck is in checking and solving collisions among the
simulated objects. The robot controllers are intentionally kept
simple and minimal to highlight the performance of the
simulator, while performing a fairly meaningful task.

For our evaluation, we employ an experimental setup
similar to Vaughan’s. Fig.4 depicts a screen-shot of the
environment in which the robots disperse. It is a square
whose sides are 40 m long. The space is structured into a
set of connected rooms that loosely mimic the layout of
a real indoor scenario. Analogously to the evaluation of

5031

(a) A1 (b) A2 (c) A4

(d) A8 (e) A16

Fig. 5. The different space partitionings (A1 to A16) of the environment
used to evaluate ARGoS’ performance. The bold dashed lines indicate the
borders of each region. Each region is updated by a dedicated instance of
a 2D dynamics physics engine.

Stage, which was performed with a basic robot model, in our
experiments we use the simplest robot available in ARGoS:
the e-puck [4]. Each robot executes a simplified version
of Howard et al.’s dispersal algorithm [21]. To keep the
evaluation meaningful with respect to typical use cases, we
run all the experiments with 2D dynamics physics engines,
including collision checking and complete calculations of
physical forces. We use the physics engine based on Chip-
munk, a fast 2D physics library largely used in games and
physics-based simulations.

We employ as performance measures two standard quan-
tities. The first is the wall clock time (w), which corresponds
to the elapsed real time between application start and end. To
reduce noise, we run our experiments on dedicated machines
in which the active processes were limited to only those
required for a normal execution of the operating system. The
second performance measure is the speedup (u). To calculate
it, we first measure the total CPU time c obtained by the
process running the experiment. The difference between w
and c is that the latter increases only when the process is
actively using the CPU. The total CPU time c is calculated
as the sum of the CPU times obtained by the process on each
core ci: c =

∑
i ci. The speedup is defined as u = c/w. In

single-core CPUs or in single-threaded applications, u ≤ 1.
With multi-threaded applications on multi-core CPUs, the
aim is to maximize u, u � 1.

We analyze the effect on w and u of different configu-
rations of our experiment. In particular, we identify three
factors that strongly influence the performance measures: (i)
the number of robots N , (ii) the number of parallel slave
threads P , and (iii) the way the environment is partitioned
into multiple physics engines. Concerning the number of
robots, we run experiments with N = 10i, where i ∈ [0,5].
To test the effect of the number of threads P , we run
our experiments on four machines with 16 cores12, and let

12Each machine has two AMD Opteron Magny-Cours processors type
6128, each processor with 8 cores. The total size of the RAM is 16 GB.

100

101

102

103

104

A
vg

E
la

ps
ed

Ti
m

e
w

[l
og

se
c]

P=0 threads
P=2 threads
P=4 threads
P=8 threads
P=16 threads

T

100 101 102 103 104 105

1
2

4

8

12

Number of Robots N [log]

A
vg

Sp
ee

du
p

u

Fig. 6. Average wall clock time and speedup for a single physics
engine (A1). Each point corresponds to a set of 40 trials with a specific
configuration 〈N,P,A1〉. Each experiment simulates T = 60 s. Points under
the dashed line in the upper plot mean that the simulations were faster than
real time; above it, they were slower. Standard deviation is omitted because
its value is so small that it would not be visible in the graph.

P ∈ {0,2,4,8,16}. When P = 0, the master thread executes
everything without spawning the slave threads. Finally, we
define five ways to partition the environment among multiple
physics engines, differing from each other in how many
engines are used and how they are distributed. We refer to a
partitioning with the symbol AE , where E ∈ {1,2,4,8,16} is
the number of physics engines employed. E also corresponds
to the number of regions in which the space is partitioned,
i.e., each engine is responsible for a single region. The
partitionings are depicted in Fig.5. For each experimental
setting 〈N,P, AE〉, we run 40 trials. The simulation time step
is 100 ms long. Each trial simulates T = 60 s of virtual time,
for a total of 600 time steps. In order to avoid artifacts in the
measures of w and u due to initialization and cleanup of the
experiments, the measures of wall clock time and speedup
are taken only inside the main simulation loop.

B. Results with a Single Physics Engine

Fig.6 shows the average wall clock time and speedup
of 40 experiments in environment partitioning A1 (a single
physics engine updates all the robots) for different values
of N and P . The graphs show that more threads result in
better performance when the number of robots is greater
than 100. In particular, the lowest wall clock times are
obtained when P = 16. Focusing on N = 100,000 and
comparing the values of w when using the maximum number
of threads and when using no threads at all, we see that
w(P = 16)/w(P = 0) ≈ 0.5.

The aim of our analysis is to study scalability for large
values of N . However, it is useful to explain why, when the
number of robots is smaller than 100, the threads impact
negatively on wall clock time. If we consider the time cost

5032

of managing multiple threads, we see that when the robots
are few in number, the time taken to assign work to the
threads is comparable to the time taken by a thread to
perform the work. Thus, it is faster to let the master thread
perform all the work. This result is also matched by the
speedup values, which are only marginally better than single-
threaded computation—when N = 1, u(P = 2) ≈ 1.01 and
u(P = 16) ≈ 1.39.

Furthermore, regarding speedup, for all values of P > 0, u
is greater than 1. When N = 1,000, the highest speedup u ≈
3.04 occurs for P = 16. For larger values of N , the speedup
decreases. This decrease occurs as only one physics engine
is responsible for the update of all the robots. Therefore,
when P ≥ 2, only one thread runs the engine, while the
other P − 1 must stay idle, not contributing to the measure
of c (however, the first two phases of the main simulation
loop are still executed in parallel). Therefore, the more robots
take part in the simulation, the more time the slave thread
in charge for physics will spend working while the other
threads stay idle—a situation analogous to a single-thread
scenario, in which w increases faster than c, thus resulting
in a lower u.

C. Results with Multiple Physics Engines

Using multiple physics engines has a beneficial impact on
performance, as shown in Fig.7. For A2 the behavior of w
and u is still analogous to A1—multiple threads are worth
their time cost for N > 100 and u presents a peak, this
time for N = 10,000. Comparing the best wall clock times
measured for N = 10,000 (which are obtained when P =
16), w(A2)/w(A1) ≈ 0.61 and w(A2) ≈ T . Therefore,
with only two engines, ARGoS can already simulate 10,000
robots in approximately real-time.

Using more engines improves both w and u. Not surpris-
ingly, when N = 10,000, the best values for wall clock
time and speedup are reached for the highest number of
space partitions (A16) and for the highest number of threads
employed (P = 16). In this configuration, the ratio between
the measured wall clock time and the simulated virtual time
T is 0.6, which gives the remarkable result that a simulation
of 10,000 robots can be performed 40% faster than real-time.
For 100,000 robots, wall clock time is about 10T , which is
a reasonable value for many applications. Also, the speedup
reaches its maximum value (≈ 11.21) when N = 100,000
and P = 16.

D. Comparison with Stage

Stage’s performance evaluation [10] was run on an Apple
MacBook Pro, with a 2.33 GHz Intel Core 2 Duo processor
and 2 GB RAM. For our evaluation, each core in the ma-
chines we employed provides comparable features: 2 GHz
speed, 1 GB RAM per thread when P = 16.

Experiments conducted in a setup analogous to ours (no
graphics, large environment with obstacles, simple robots)
show that Stage can simulate about 1,000 robots in real-time.
In comparison, when no threads are employed and a single
physics engine is responsible for the entire environment,

ARGoS simulates 1,000 robots 76% faster than real time.
ARGoS performance is further enhanced by the use of
threads. With 2 threads and a single physics engine, 1,000
robots are simulated 79% faster than real time. Increasing
the number of threads to 16, 1,000 robots are simulated 87%
faster than real time. When 16 physics engines are employed,
1,000 robots are simulated 91% faster than real time.

Moreover, it is worth remarking that, in our experi-
ments, we employed a realistic 2D dynamics physics engine,
whereas Stage is based on a simpler 2D kinematics physics
engine.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced ARGoS, a simulator designed
for large heterogeneous swarms of robots. With respect
to existing simulators, ARGoS offers a more extensible
architecture that (i) enables the user to allocate accuracy
(and therefore CPU resources) to the relevant parts of an
experiment, and (ii) makes it easy to modify or add func-
tionality in the form of modules, promoting exchange and
cooperation among researchers. A unique feature of ARGoS
is that multiple physics engines can be used at the same time,
partitioning the space into independent sub-spaces. Each sub-
space can have its own update rules, and these update rules
can be optimized for the experiment at hand. Robots can
migrate from a physics engine to another transparently. In
addition, the multi-threaded architecture of ARGoS proves
very scalable, showing low run-times and high speedup on
multi-core CPUs. Results show that ARGoS can simulate
10,000 robots 40% faster than real-time, using multiple 2D
dynamics physics engines.

Future work involves reaching real-time performance for
swarms composed of hundreds of thousands of robots. Pos-
sible approaches may be: (i) employing a heterogeneous
threading model performing the computation both on CPU
and GPU [22] and (ii) modifying the multi-threaded archi-
tecture of ARGoS into a mixed multi-thread/multi-process
architecture, in which physics engines and the simulated
space are distributed across different machines in a network.

ACKNOWLEDGMENTS

This research was carried out in the framework of Swarmanoid,
a project funded by the Future and Emerging Technologies pro-
gramme (IST-FET) of the European Commission under grant IST-
022888. This work was also partially supported by the ERC
Advance Grant “E-SWARM: Engineering Swarm Intelligence Sys-
tems” (grant 246939), and by the EU project ASCENS (grant
257414). Manuele Brambilla acknowledges support from the Fund
for Industrial and Agricultural Research FRIA-FNRS of Belgium’s
French Community. Arne Brutschy and Marco Dorigo acknowledge
support from the Belgian F.R.S.-FNRS, of which they are Research
Fellow and Research Director, respectively.

REFERENCES

[1] M. Bonani, V. Longchamp, S. Magnenat, P. Rétornaz, D. Burnier,
G. Roulet, F. Vaussard, H. Bleuler, and F. Mondada, “The marXbot,

5033

100

101

102

103

104

A
vg

E
la

ps
ed

Ti
m

e
w

[l
og

se
c]

P=0 threads
P=2 threads
P=4 threads
P=8 threads
P=16 threads

100 101 102 103 104 105

1
2

4

8

12

Number of Robots N [log]

A
vg

Sp
ee

du
p

u

100 101 102 103 104 105

Number of Robots N [log]
100 101 102 103 104 105

Number of Robots N [log]

T

100 101 102 103 104 105

Number of Robots N [log]

A2 A4 A8 A16

Fig. 7. Average wall clock time and speedup for partitionings A2 to A16. Each point corresponds to a set of 40 trials with a specific configuration
〈N,P,AE〉. Each experiment simulates T = 60 s. Points under the dashed line in the upper plots mean that the simulations were faster than real time;
above it, they were slower. Standard deviation is omitted because its value is so small that it would not be visible in the graph.

a miniature mobile robot opening new perspectives for the collective-
robotic research,” in Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). Piscataway, NJ:
IEEE Press, 2010, pp. 4187–4193.

[2] J. Roberts, T. Stirling, J. Zufferey, and D. Floreano, “Quadrotor
using minimal sensing for autonomous indoor flight,” in European
Micro Air Vehicle Conference and Flight Competition (EMAV), 2007,
proceedings on CD-ROM.

[3] M. Bonani, S. Magnenat, P. Rétornaz, and F. Mondada, “The hand-
bot, a robot design for simultaneous climbing and manipulation,” in
Proceedings of the Second International Conference on Intelligent
Robotics and Applications (ICIRA 2009), ser. Lecture Notes in Com-
puter Science. Berlin, Germany: Springer, 2009, vol. 5928, pp. 11–22.

[4] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-
puck, a robot designed for education in engineering,” in Proceedings of
the 9th Conference on Autonomous Robot Systems and Competitions.
Castelo Branco, Portugal: IPCB, 2009, vol. 1, pp. 59–65.

[5] J. Kramer and M. Schultz, “Development environments for au-
tonomous mobile robots: a survey,” Autonomous Robots, vol. 22, no. 2,
pp. 101–132, 2007.

[6] O. Michel, “Cyberbotics Ltd. – Webots: Professional mobile robot sim-
ulation,” International Journal of Advanced Robotic Systems, vol. 1,
no. 1, pp. 39–42, March 2004.

[7] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“USARSim: a robot simulator for research and education,” in Pro-
ceedings of the IEEE Conference on Robotics and Automation (ICRA).
Piscataway, NJ: IEEE Press, 2007, pp. 1400–1405.

[8] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an
open-source multi-robot simulator,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
Piscataway, NJ: IEEE Press, 2004, pp. 2149–2154.

[9] M. Friedman, “Simulation of autonomous robot teams with adapt-
able levels of abstraction,” Ph.D. dissertation, Technische Universität
Darmstadt, Germany, 2010.

[10] R. Vaughan, “Massively multi-robot simulation in Stage,” Swarm
Intelligence, vol. 2, no. 2, pp. 189–208, 2008.

[11] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and
M. Gross, “Optimized spatial hashing for collision detection of
deformable objects,” in Proceedings of the Vision, Modeling, and
Visualization Conference. Heidelberg, Germany: Aka GmbH, 2003,
pp. 47–54.

[12] S. Magnenat, P. Rétornaz, M. Bonani, V. Longchamp, and F. Mondada,

“ASEBA: A modular architecture for event-based control of complex

robots,” IEEE/ASME Transactions on Mechatronics, vol. PP, no. 99,
pp. 1–9, 2010.

[13] J. Bachrach, J. Beal, and J. McLurkin, “Composable continuous-space
programs for robotic swarms,” Neural Computation & Applications,
vol. 19, pp. 825–847, 2010.

[14] N. Mathews, A. Christensen, E. Ferrante, R. O’Grady, and M. Dorigo,
“Establishing spatially targeted communication in a heterogeneous
robot swarm,” in Proceedings of 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010). Toronto,
Canada: IFAAMAS, 2010, pp. 939–946.

[15] C. Pinciroli, R. O’Grady, A. Christensen, and M. Dorigo, “Self-
organised recruitment in a heterogeneous swarm,” in The 14th Inter-
national Conference on Advanced Robotics (ICAR 2009), 2009, p. 8,
proceedings on CD-ROM, paper ID 176.

[16] A. S. Tanenbaum, Modern Operating Systems, 2nd ed. New Jersey,
NJ: Prentice-Hall, 2001.

[17] G. Di Caro, F. Ducatelle, C. Pinciroli, and M. Dorigo, “Self-organised
cooperation between robotic swarms,” Swarm Intelligence, vol. 5,
no. 2, pp. 73–96, 2011.

[18] F. Ducatelle, G. Di Caro, and L. Gambardella, “Cooperative self-
organization in a heterogeneous swarm robotic system,” in Pro-
ceedings of the Genetic and Evolutionary Computation Conference
(GECCO). New York, NY: ACM, 2010, proceedings on CD-ROM.

[19] M. A. Montes de Oca, E. Ferrante, N. Mathews, M. Birattari, and
M. Dorigo, “Opinion dynamics for decentralized decision-making in a
robot swarm,” in Proceedings of the Seventh International Conference
on Swarm Intelligence (ANTS 2010), ser. LNCS 6234, M. Dorigo et al.,
Eds. Berlin, Germany: Springer, 2010, pp. 251–262.

[20] E. Ferrante, M. Brambilla, M. Birattari, and M. Dorigo, “Socially-
mediated negotiation for obstacle avoidance in collective transport,” in
International Symposium on Distributed Autonomous Robotics Systems
(DARS), ser. Advanced Robotics Series. Springer, 2010, in press.

[21] A. Howard, M. Matarić, and G. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed, scalable solution
to the area coverage problem,” in Proceedings of the International
Symposium on Distributed Autonomous Robotic Systems (DARS).
New York: Springer, 2002, pp. 299–308.

[22] D. W. Holmes, J. R. Williams, and P. Tilke, “An events based algo-
rithm for distributing concurrent tasks on multi-core architectures,”
Computer Physics Communications, vol. 181, no. 2, pp. 341–354,
February 2010.

5034

